Abstract

We studied the structural transformations and atomic rearrangements in strontium titanate (SrTiO3) via nanosecond pulsed laser irradiation-induced melting and ultrafast quenching. Using scanning transmission electron microscopy, we determine that the laser-irradiated surface in single-crystalline SrTiO3 transforms into an amorphous phase with an interposing disordered crystalline region between amorphous and ordered phases. The formation of disordered phase is attributed to the rapid recrystallization of SrTiO3 from the melt phase constrained by an epitaxial relation with the pristine region, which eases up on the surface, leading to amorphous phase formation. With electron energy-loss spectroscopic analysis, we confirm the transformation of Ti+4 to Ti+3 due to oxygen vacancy formation as a result of laser irradiation. In the disordered region, the maximum transformation of Ti+4 is observed to be 16.2 ± 0.2%, whereas it is observed to be 20.2 ± 0.2% in the amorphous region. Finally, we deduce that the degree of the disorder increases from atomically disordered to amorphous transition in SrTiO3 under laser-irradiation. The signatures of short-range ordering remain similar, leading to a comparable fingerprint of electronic structure. With these results, this study addresses the gap in understanding the atomic and electronic structure modified by pulsed laser irradiation and functionalizing pristine SrTiO3 for electronic, magnetic, and optical applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.