Abstract
We have developed a method for detecting acoustic fields in solids irradiated with dense electron beams. The method is based on laser Michelson interferometry. The electron source is a high-current DZhIN electron accelerator. The detection system features a short baseline Michelson interferometer located inside the experimental chamber with the sample, a stabilized initial beam pathlength difference within the interferometer, high temporal resolution, an analog-to-digital converter with output to a personal computer, and a program for reducing the interferometer data. We can measure both long pulses with minimum displacements of 10−10 m and durations of 10−8 sec, and flexure waves with large-amplitude displacements of 10−5 m and oscillation periods of 10−3 sec. We present results from studies of flexure waves in thin plates and rods of copper, silicon, alkali-halide crystals, quartz glasses, and D16T aluminum alloy irradiated by nanosecond high-density electron beams.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.