Abstract

AbstractThe determination of the laser intensity profile necessary to weld two thermoplastic parts is crucial for understanding and optimizing the laser welding process in polymers and composite materials. Traditional methods of measuring the laser beam intensity profile, such as laser beam profiling techniques, can be difficult to implement and expensive. In this paper, we present the development of a technique that combines a numerical inverse method with experimental temperature measurements to determinate the laser intensity distribution at the weld interface. This technique does not require specialized or expensive equipment and accounts for variations in laser beam intensity caused by different components and interfaces. The technique uses thermocouple sensors to measure interface temperatures during welding, and an analytical gaussian model to estimate the laser intensity distribution at the weld interface. The model is then used as input data in a numerical heat transfer model. The technique is validated through experimental investigations on transparent and absorbent Polylactic acid polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.