Abstract

We report on the use of laser-induced ultrasonics for the detection of gratings with amplitudes as small as 0.5 nm, buried underneath an optically opaque nickel layer. In our experiments, we use gratings fabricated on top of a nickel layer on glass, and we optically pump and probe the sample from the glass side. The diffraction of the probe pulse from the acoustic echo from the buried grating is measured as a function of time. We use a numerical model to show how the various physical phenomena such as interface displacement, strain-optic effects, thermo-optic effects, and surface roughness influence the shape and strength of the time-dependent diffraction signal. More importantly, we use a Rayleigh-Rice scattering theory to quantify the amount of light scattering, which is then used as in input parameter in our numerical model to predict the time-dependent diffracted signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.