Abstract

The peripheral nervous system comprises glia and neurons that receive the necessary cues for their adhesion and proliferation from their extracellular milieu. In this study, a spatial platform of pseudoperiodic morphologies including patterns of nano- and micro- structures on Si were developed via direct ultrafast-laser structuring and were used as substrates for the patterning of co-cultured neuronal cells. The response of murine Schwann (SW10) and Neuro2a (N2a) cells were investigated both in monocultures and in a glia and neuronal co-culture system. Our results denoted that different types of neural tissue cells respond differently to the underlying topography, but furthermore, the presence of the glial cells alters the adhesion behavior of the neuronal cells in their co-culture. Therefore, we envisage that direct laser structuring that enables spatial patterning of the cells of the nervous system in a controllable manner according to the research needs, could in the future be a useful tool for understanding neural network interfaces and their electrical activity, synaptic processes and myelin formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call