Abstract

The existence of a signal baseline due to a variety of reasons in a photoacoustic (PA) gas measurement system is a common phenomenon. One major component is the absorption of optical windows in an enclosed PA cell. This work explores the relation between the background signal and the thermoelastic effect inside the windows by modelling the pressure and elastic wave field by means of a Green-function based method. The influence of laser incidence location, angle and radius is discussed based on a rigorous three-dimensional solid-to-fluid coupling model. The effects were theoretically demonstrated culminating in the determination of best (minimum background signal) performance using a collimated and expanded incident laser beam. The results were also validated through experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call