Abstract

Spherical nanoparticles with a gold outer shell and silica core can be tuned to absorb near-infrared light of a specific wavelength. These nanoparticles have the potential to enhance the treatment efficacy of laser-induced thermal therapy (LITT). In order to enhance both the potential efficacy and safety of such procedures, accurate methods of treatment planning are needed to predict the temperature distribution associated with treatment application. In this work, the standard diffusion approximation was used to model the laser fluence in phantoms containing different concentrations of nanoparticles, and the temperature distribution within the phantom was simulated in three-dimensions using the finite element technique. Magnetic resonance temperature imaging was used to visualize the spatiotemporal distribution of the temperature in the phantoms. In most cases, excellent correlation is demonstrated between the simulations and the experiment (<3.0% mean error observed). This has significant implications for the treatment planning of LITT treatments using gold-silica nanoshells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.