Abstract

Ultrafast laser technology presents the unique capacity to process glass materials with an outstanding processing quality; however, combining high quality and high throughput is still a crucial issue because glass is brittle and highly heat sensitive. One strategy to overcome this limitation is to split in space the main laser beam into multiple beams for process parallelization. In the present paper, the simultaneous interaction of several femtosecond laser beams at the surface of fused silica targets is addressed experimentally and theoretically. This work is devoted to highlight the beams cooperation for inducing stress in the material. The experiment consists in irradiating the target with multiple laser pulses with a wavelength of 1030 nm and a duration of 500 fs. The induced stress is observed through post-mortem cross-polarized microscopy. A multiscale and multiphysics model describing laser energy deposition into the material and its mechanical response is developed. The influence of various laser parameters is studied: number and position of laser beams, repetition rate, and fluence. Both experimental and modeling results, which are in a good agreement, show significant cooperative effects for stress formation with large enough laser energy deposition, possibly leading to detrimental cracks.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.