Abstract

ABSTRACTWe review recent work on the kinetics of laser-induced solid phase epitaxial crystallization of silicon as determined from time-resolved reflectivity measurements. Specific topics which are addressed include: the intrinsic kinetics of solid phase epitaxy (SPE) in ion-implanted and UHV-deposited films; SPE rate enhancement by implanted dopant atoms and the effects of electrical compensation on the SPE rate; and the temperature dependence of SPE and competing processes in samples containing impurity atoms at concentrations exceeding the solid solubility limit. The high temperature kinetics results are compared with predictions from transition state theory and are discussed with respect to a proposed depression in the amorphous Si melting temperature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call