Abstract

An adaptive optics (AO) system was incorporated into a laser retinal exposure setup in order to correct for refractive error and higher-order aberrations of the nonhuman primate (NHP) eye during an in vivo retinal ED(50) measurement. Using this system, the ED(50) for a 100-ms, 532-nm small spot size exposure was measured to be 1.05 mJ total intraocular energy (TIE), a reduction of 22% from the value measured without aberration correction. The ED(50) for a 3.5-ns, 532-nm exposure was measured to be 0.51 microJ TIE, the lowest ED(50) reported for a ns-duration exposure. This is a reduction of 37% from the value measured without aberration correction and is a factor of only 2.6 higher than the maximum permissible exposure (MPE) for a 3.5-ns, visible wavelength small spot size exposure. The trend of in vitro measurements using retinal explants suggests that the in vivo ED(50) for small spot-size exposures could potentially be one order of magnitude smaller than the previously reported in vivo ED(50). Distortion of the incident laser beam by ocular aberrations cannot fully explain the discrepancy between the in vivo measurements with no aberration correction and the in vitro results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.