Abstract

In this paper we present a simple model of the laser induced plasma (LIP) expansion in a low pressure surrounding atmosphere. The model is based on assumption that expansion process is dominantly governed by kinematics of the heavy particles. The model is accompanied with a simple, yet effective, Monte-Carlo simulation. Results of the simulation are compared with spectroscopic measurements of the laser induced copper plasma expanding in low pressure (200Pa) hydrogen atmosphere. We found that characteristic expansion time of the LIP is proportional to the linear dimension of the initial volume heated up by the laser. For sufficiently large initial volume copper plasma remains in local thermodynamic equilibrium on the submicrosecond-microsecond scale. It is shown that diagnostics based on the spectral lines of the hydrogen atmosphere is not suitable for characterization of the core of the copper plasma. We have demonstrated importance of radially resolved spectroscopic measurements as a key step for correct diagnostics and understanding of laser induced plasma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.