Abstract

This paper deals with the formation of laser-induced periodic surface structures (LIPSS) on mesoporous silicon thin films induced by two laser regimes in the UV range: picosecond and femtosecond. Different LIPSS formation mechanisms from nanoparticles, mainly coalescence and agglomeration, have been evidenced by scanning electron microscopy analysis. The apparition of a liquid phase during both laser interaction at low fluence (20 mJ/cm2) and after a large number of laser pulses (up to 12,000) has been also shown with 100 nm size through incubation effect. Transmission electron microscopy analyses have been conducted to investigate the molten phase structures below and inside LIPSS. Finally, it has shown that LIPSS are composed of amorphous silicon when mesoporous silicon is irradiated by laser beam in both regimes. Nevertheless, mesoporous silicon located between LIPSS stays crystallized.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.