Abstract

Laser induced periodic surface structures (LIPSS or ripples) were generated on single crystal germanium after irradiation with multiple 3 µm femtosecond laser pulses at a 45° angle of incidence. High and low spatial frequency LIPSS (HSFL and LSFL, respectively) were observed for both s- and p-polarized light. The measured LSFL period for p-polarized light was consistent with the currently established LIPSS origination model of coupling between surface plasmon polaritons (SPP) and the incident laser pulses. A vector model of SPP coupling is introduced to explain the formation of s-polarized LSFL away from the center of the damage spot. Additionally, a new method is proposed to determine the SPP propagation length from the decay in ripple depth. This is used along with the measured LSFL period to estimate the average electron density and Drude collision time of the laser-excited surface. Finally, full-wave electromagnetic simulations are used to corroborate these results while simultaneously offering insight into the nature of LSFL formation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call