Abstract

Liquid sulfur is a well-known liquid which exhibits a polymerization transition at T(p)=159 degrees C. Recently, it was found from our experiments that such a transition can be induced below T(p) through laser illumination and that an iridescent pattern appears under strong illumination with a pulsed laser of more than 60 mJ/cm(2) pulse. It is proposed that the visible change in iridescence is due to a macroscopic reconstruction of laser-generated polymers and that a laser-induced phase transition takes place from a freely expanded polymer phase to an ordered polymer phase when increasing the laser illumination. To further examine this possibility, the time variation of the iridescent pattern has been fully investigated using a macro lens, a polarized microscope and an optical microscope. In an analysis of the iridescent pattern, a rapid decrease in the area was observed after an initial slow decrease, suggesting a type of phase transition. Results from the observation of a quenched sulfur sample with a polarized microscope gave evidence that the iridescent region consists of polymers. Through observation of the liquid with a microscope, a striped pattern with micrometer sized spacing was noted in the iridescent pattern. A drastic color change was observed in the pattern from its generation to its disappearance. Sample thickness dependence of the pattern was also observed. These results were well explained by assuming the self-arrangement of laser-generated colloidal polymers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.