Abstract

AbstractThis study investigates the crystallization of acetaminophen (ACET) in ultrapure water and a 10 wt.% aqueous polyacrylic acid (PAA) solution using non‐photochemical laser‐induced nucleation (NPLIN) for the first time. Using a 532 nm nanosecond laser, two distinct crystal morphologies—rhombic and tetragonal plate‐like—are formed in both solvents after adding impurities. Notably, the PAA solution showed a reduced number of crystals and slower growth rates compared to ultrapure water, suggesting that the acidic polymer modulates crystal growth. Interestingly, crystals are not induced by the laser without impurities. However, impurities like copper phthalocyanine (CuPc) or boron carbide (CB4) enabled successful NPLIN, with CB4 showing higher nucleation efficiency than CuPc. The study also explores how laser power affects nucleation probability and identifies potential laser energy thresholds. Experimental data on ACET crystal sizes over time are fitted to derived equations, which accurately represented trends and predicted results. The nanoparticle heating mechanism and the role of acidic polymers in affecting nucleation probability and growth rate are discussed, along with potential mechanisms for changes in crystal morphology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call