Abstract
Coherent control of chaotic molecular systems, using laser-assisted alignment of sulphur dioxide (SO2) molecules in the presence of a static electric field as an example, is considered. Conditions for which the classical version of this system is chaotic are established, and the quantum and classical analogs are shown to be in very good correspondence. It is found that the chaos present in the classical system does not impede the alignment, neither in the classical nor in the quantum system. Using the results of numerical calculations, we suggest that laser-assisted alignment is stable against rotational chaos for all asymmetric top molecules.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.