Abstract

The control of interface status is greatly critical to release large-area, ultrathin flexible electronics from the donor wafer to achieve mechanical flexibility. This paper discovers a laser-induced interfacial spallation process for controllable and versatile delamination of polyimide (PI) films from transparent substrates and makes a comprehensive mechanism study of the controllability of interfacial delamination after laser irradiations. Microscopic observations show that backside irradiations will result in the formation of nanocavities around the PI-glass interface, enabling a significant decrease in interface adhesion. Theoretical calculations indicate that gas products generated from thermal decomposition of PI will cause hydrodynamic spallation of molten PI around the interface. The controllable spallation behavior benefits the formation/elimination of fibrous microconnections between the PI film and glass substrate. A substantial regulation of interfacial micromorphologies can achieve precise control of interface adhesion, mass production of functional nanostructures, and nondestructive peeling of ultrathin flexible devices. The results could be useful for the fabrication of flexible electronics and biomimetic surfaces.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.