Abstract

Recent progress in the in situ synthesise of various nanomaterials has gained tremendous interest and wide applications in various fields. For the first time to the best of our knowledge, this work reports a methodology of ultra-fast in situ synthesis of cobalt–cobalt oxide-reduced graphene oxide (Co−Co3O4−rGO (CC–rGO)) composite by laser ablation. The photothermal reduction technique was leveraged to develop the CC–rGO. For this, a low-cost 450 nm blue diode laser was irradiated onto a grade 1 filter paper in the presence of cobalt ions readily patterns the carbon matrix of paper to the composite material. Moreover, the variation of cobalt concentrations from 0.1–0.5 M led to structural and morphological changes. Standard techniques were adopted for thorough characterizations of developed sensor material for conductivity analysis, specific surface area, crystal-structural information, surface morphology, and chemical composition. The observed results were highly promoting towards the electrochemical sensing applications. Further, the developed sensor was found to be highly selective toward detecting a vital bio analyte alkaline phosphatase (ALP). The sensors performance was highly significant in the linear range of 10–800 mU l−1 with a detection limit of 10.13 mU l−1. The sensors applicability was further validated in actual human serum samples via a recovery-based approach. In the future, the developed in situ material methodology can begin a rapid composite material synthesis at a larger scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.