Abstract
Microforming of metals has always been a challenge because of the limited formability of metals at the microscale. This paper investigates an innovative microforming technique: microscale laser dynamic forming (¿LDF), which induces 3-D superplastic forming in metallic thin films. This forming process proceeds in a sequence of laser irradiation and ionization of ablative coating, shockwave generation and propagation in metallic thin films, and conformation of metallic thin films to the shape of microscale molds. Because the deformation proceeds at ultrahigh strain rates, it is found that materials experience superplastic deformation at the microscale. In this paper, experiments are systematically carried out to understand the deformation characteristics of ¿LDF. The topologies and dimensions of the deformed samples are characterized by scanning electron microscopy and optical profilometry. The thickness variations are characterized by slicing the cross section of the deformed material using the focused ion beam. The magnitude of deformation depth in ¿LDF is determined primarily by three critical factors: film thickness, mold geometry, and laser intensity. The relationships between these factors are explored in process maps to find suitable processing conditions for ¿LDF. Nanoindentation tests are conducted to show that the strength of the thin films is increased significantly after ¿LDF.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.