Abstract

Multilayer graphene on SiC is a promising material due to its compatibility with modern electronics technology. Herein, we demonstrate the growth of large-area (~10 × 5 mm2), high-quality (D/G area ratio: ~0.03) epitaxial graphene on 4H-SiC(0001) using a high-power continuous laser with an extremely fast heating rate of 500 °C/s. As the growth temperature rises from 1550 °C to 1780 °C, the number of graphene layers increases from three to more than ten. The obtained graphene/SiC samples are highly conductive, with a sheet resistance of as low as ~0.43 Ω/sq. The high power and fast heating rate of the laser contribute to the formation of large-area and low-sheet-resistance graphene. The high conductivity makes graphene/SiC a very promising material for applications in conductive films. The growth mechanism of graphene and the influence of the structural properties of graphene on the conductivity are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.