Abstract

Graphene nanomaterials can feature both superb electrical conductivity and unique physical properties such as extreme surface wettability, which are potentially applicable for many purposes including water treatment. Laser-induced graphene (LIG) is an electrically conductive three-dimensional porous carbon material prepared by direct laser writing on various polymers in ambient conditions with a CO2 laser. Low-fouling LIG coatings in water technology have been reported; however, the mechanical strength and the separation properties of LIG-coated membranes are limited. Here, we show mechanically robust electrically conductive LIG-poly(vinyl alcohol) (PVA) composite membranes with tailored separation properties suitable for ultrafiltration processes. PVA has outstanding chemical and physical stability with good film-forming properties and is a biocompatible and nontoxic polymer. Compared to LIG-coated filters, the PVA-LIG composite membrane filters exhibited up to 63% increased bovine serum albumin rejection and up to ∼99.9% bacterial rejection, which corresponded well to the measured molecular weight cutoff ∼90 kDa. Compared to LIG fabricated on a polymer membrane control, the composite membranes showed similar excellent antifouling properties including low protein adsorption, and the antibiofilm effects were more pronounced at lower PVA concentrations. Notably for the antibacterial capabilities, the LIG-supporting layer maintained its electrical conductivity and a selected LIG-PVA composite used as electrodes showed complete elimination of mixed bacterial culture viability and indicated that the potent antimicrobial killing effects were maintained in the composite. This work demonstrates that the use of LIG for practical industrial filtration applications is possible.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.