Abstract

Laser-induced fluorescence of acetone and 3-pentanone for a 248 nm excitation wavelength was investigated for conditions relevant for internal combustion engines regarding temperature, pressure, and gas composition. An optically accessible calibration chamber with continuous gas flow was operated by using CO2 and air as a bath gas. According to the varying pressure and temperature conditions during the compression stroke of a spark ignition engine, fluorescence experiments were performed under isothermal pressure variations from 1 to 20 bars for different temperatures between 293 and 700 K. The ketone fluorescence behavior predictions, based on a model previously developed by Thurber et al. [Appl. Opt. 37, 4963 (1998)], were found to overestimate the pressure-related fluorescence increase for high temperature and small wavelength excitation at 248 nm. The parameters influencing the model only in the large vibrational energy regime were newly adjusted, which resulted in an improved model with a better agreement with the experiment. The model's validity for excitation at larger wavelengths was not influenced. For the air bath gas an additional collision and vibrational energy sensitive quenching rate was implemented in the model for both tracers, acetone and 3-pentanone.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.