Abstract

We present laser-induced fluorescence measurements of acceleration zone scaling with discharge voltage (Vd), magnetic field strength (B), and facility background pressure (PBG) in NASA’s 12.5 kW Hall Effect Rocket with Magnetic Shielding. At fixed discharge current, the plasma potential profiles at discharge voltages from 300 to 600 V approximately overlapped in the region with plasma potential less than 300 V; ion acceleration began further upstream at higher Vd because the region with a steep potential gradient was broader. The radial divergence of mean ion velocity vectors in the outer half of the channel and near plume increased with decreasing Vd. At fixed Vd, the acceleration zone was located further upstream at higher B and at higher PBG. Bimodal ion velocity distribution functions (IVDFs) were measured along the channel centerline in the acceleration zone at high discharge voltages; this effect was attributed to time-averaging over movement of the acceleration zone during large-amplitude discharge current oscillations. At lower discharge voltages, the broadening of the IVDFs in the near plume could not be fully explained by ionization within the acceleration region. These results have implications for understanding front pole erosion, which can be an important wear mechanism over the long lifetimes of magnetically shielded thrusters, and they provide baseline data for validating first principles models of cross-field electron transport.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.