Abstract

The development of a laser-induced fluorescence detection scheme for probing combustion-relevant species using a high-repetition-rate ultrafast laser is described. A femtosecond laser system with a 1 kHz repetition rate is used to induce fluorescence, following two-photon excitation (TPE), from hydroxyl (OH) radicals that are present in premixed laminar flames. The experimental TPE and one-photon fluorescence spectra resulting from broadband excitation into the (0,0) band of the OH A(2)∑(+)-X(2)Π system are compared to simulated spectra. Additionally, the effects of non-transform-limited femtosecond pulses on TPE efficiency is investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call