Abstract

Microelectronics industry is growing fast and the rate of new devices' development increases every year. Therefore, methods for simple and high-precision metal coating on dielectrics are needed. Existing methods do not allow performing the high-precision metal deposition without using photomasks, while making a photomask for each prototype is a long and expensive process. One of the methods of maskless metal deposition is laser-induced chemical liquid-phase deposition (LCLD). In this work we show the effect of substrate surface type on a result of LCLD. Deposited copper structures were characterized by SEM, EDX and impedance spectroscopy. The results show that laser-induced copper deposition is highly affected by the surface being a homogeneous or composite material. It was found that the deposits with low resistivity and high quality metal localization mostly appear on the two-phase surfaces. In contrast, deposits on one-phase surfaces exhibited poor topology of copper material. Statistical modeling was involved to describe this phenomenon.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call