Abstract

A ratiometric self-powered photoelectrochemical sensor based on laser direct writing technology was constructed to address the problem that the conventional single-signal detection mode was susceptible to the influence of instrumentation and environmental factors, which interfered with the detection results. Laser-induced CdS/TiO2/Graphene was prepared as dual photoanodes (PA1 and PA2), which were controlled by multiplexed switches to form a photocatalytic fuel cell with Pt cathode. By modifying the aptamer of aflatoxin B1 (AFB1) on the photoanode surface, the target was specifically captured to the electrode surface to form a biological complex, which increased the steric hindrance and affected the electron transfer, thus reducing the output signal of the sensor. Targets with different concentrations were incubated on the surface of PA1, and targets with fixed concentrations were incubated on the surface of PA2. Under the control of the multiplex switch, the output signals of the two photoanodes were recorded, and the ratio of these two signals was used as the basis for the quantitative detection of AFB1. The sensor output was linearly increasing with the logarithm of AFB1 concentration from 1.0 to 150ngmL-1 and the detection limit was 0.0974ngmL-1. Additionally, this method had good stability, fast response, and good selectivity to real samples, providing an effective method for food safety monitoring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.