Abstract

The laser-induced deformation of a typical commercial cantilever commonly used for scanning near-field optical microscopes was investigated by means of a software package based on the finite element method. The thermo-mechanical behaviour of such a cantilever whose tip was irradiated by a laser beam was calculated in the temperature regime between room temperature and 850 K. The spatial tip displacement was simulated at timescales <0.1 ms, since feedback-based constant force measurements exhibit reaction times in this range. It could be shown that in addition to former tip-based thermal expansion calculations the cantilever deformation is already significant at moderate temperatures, particularly when a reflective coating is present. The experimental and calculated results suggest that tip scanning in cantilever-based scanning probe microscopes for laser-based surface modification applications should be performed in thermal equilibrium.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.