Abstract

Currently, cancer theranostic studies have only focused on integrating existing medical imaging techniques with therapeutic modalities. Obviously, this strategy is not a real theranostic method, as diagnosis and therapy are based on different principles and require independent operation. Here, a cancer theranostic method was established by laser-induced breakdown spectroscopy (LIBS)-mediated synergistic photothermal/photodynamic therapy, which was activated by a single 1064-nm light for simultaneous tumor localization and treatment. PEGylated cobalt phosphate (CoP@PEG) nanoparticles (NPs) with strong near-infrared (NIR)-II absorbance, high photothermal conversion efficiency and a reactive oxygen species generation effect were fabricated, and they produced excellent antitumor outcomes under 1064-nm excitation, as evidenced by the substantial increase in HepG2 cell death in vitro and complete tumor elimination in vivo. Meanwhile, the diagnostic method of the LIBS imaging system used in the present study also uses 1064-nm light. The LIBS imaging system can provide fast, real-time analysis and imaging of elements and facilitate the localization of the tumor site by monitoring the distribution of CoP@PEG NPs for precise tumor treatment. We postulate that this theranostic platform will promote the development of further theranostic research.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call