Abstract

Three-dimensional multi-elemental mapping of composite wear-resistant coatings by laser-induced breakdown spectroscopy has been demonstrated for the first time, to the best of our knowledge. Individual clads of 1560 nickel alloy reinforced with tungsten carbide were synthesized by a co-axial laser cladding technique. Electron energy dispersive x-ray spectroscopy revealed elemental maps for major elements (W, Ni, Co, Cr, Fe) but failed to measure silicon and carbon. Laser-induced breakdown spectroscopy was utilized for elemental mapping of carbon and all other elements of interest. It was demonstrated that three-dimensional elemental profiling for a few tens of micrometers requires substantial laser spot overlapping during the scanning procedure in order to achieve good accuracy of depth measurements. Elemental maps for nickel, iron, chromium, silicon, tungsten, and carbon were quantified for 900 μm×900 μm×45 μm volume with 30μm lateral and 4μm depth resolution in the case of tungsten carbide particles in nickel alloy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.