Abstract
The present study reports the evaluation of Laser Induced Breakdown Spectroscopy (LIBS) and Neural Networks (NN) for the discrimination of different strains of various species of Candida. This genus of yeast was selected due to its medical relevance as it is commonly found in cases of fungal infection in humans. Twenty one strains belonging to seven species of Candida were included in the study. Scanning Electron Microscopy with Energy-Dispersive X-ray Spectroscopy (SEM-EDS) was employed as a complementary technique to provide information about elemental composition of Candida cells. The use of LIBS spectra in combination with optimized NN models provided reliable discrimination among the distinct Candida strains with a high spectral correlation index for the samples analyzed, without any false positive or false negative. Therefore, this study indicates that LIBS-NN based methodology has the potential to be used as fast fungal identification or even diagnostic method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.