Abstract

Using optical and acoustic methods we study thermal and transport processes related to the boiling of biological liquids under the action of continuous-wave laser radiation having moderate power (1 – 10 W) in the near-IR range (0.97 – 1.94 μm). These processes are investigated in the course of a few particular clinical procedures aimed at the modification and removal of pathological tissues (veins, mammary gland cyst, Baker’s cyst) and tissue regeneration (intervertebral discs). In the proposed approach, the modification and destruction of biotissues are due to the fast delivery of heat by two-phase jet flows, formed in the course of liquid boiling, rather than the direct laser heating. This provides the high rate of heat delivery to the pathological biotissue, avoiding its overheating (the temperature higher than 100 °C) and undesired heating of adjacent tissues. Two main regimes of laser-induced boiling near the optical fibre tip were revealed, namely, the heterogeneous jet boiling (arising when the fibre with a blackened tip is used) and the homogeneous boiling (with the radiation absorbed in the liquid volume). Both studied regimes allow one to obtain high specific heat flows, and the domination of one of the boiling regimes is determined by the presence of absorbing coating on the fibre tip, the tissue type, as well as by its shape (e.g., the presence of channels or cavities in the tissue). It is established that the heterogeneous jet boiling at the fibre tip corresponds to the regime of superintensive bubble boiling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.