Abstract

A technique that provides quantitative and spatially resolved retardance measurement is studied for application to laser-induced modification in transparent materials. The method is based on the measurement of optical path differences between two wavefronts carrying different polarizations, measured by a wavefront sensor placed in the image plane of a microscope. We have applied the technique to the investigation of stress distribution induced by CO2 laser processing of fused silica samples. By comparing experiments to the results of thermomechanical simulations we demonstrate quantitative agreement between measurements and simulations of optical retardance. The technique provides an efficient and simple way to measure retardance of less than 1 nm with a diffraction-limited spatial resolution in transparent samples, and coupled to thermomechanical simulations it gives access to birefringence distribution in the sample.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.