Abstract

Management of burn injuries are a growing concern, especially in determining the progression of healing. Several techniques are being practiced in clinics and have been considered all-time standard approaches to determine pre- and post-treatment outcomes of a healthy healing. However, these kinds of methods involve repeated biopsies and thereby hindering tissue repair. In view of this, our perspective was to develop a non-invasive tool in an attempt to provide a solution to determine the progression of healing, in vivo. Hence, the present study was designed to investigate the ability of laser-induced fluorescence (LIF) to monitor the variations in collagen intensity at various time points (0, 2, 6, 12, 18, 24, and 30days) during burn tissue repair in mice, post low-power laser therapy (LPLT). The spectral findings demonstrated a significant change in collagen intensity as observed on day 24 (p<0.05) and 30 (p<0.01), when treated with LPLT (830nm 3J/cm2) as compared to untreated control. From the observation, it was evident that the LIF could objectively monitor the progression of burn tissue repair in vivo.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call