Abstract

The main goal is to develop an optimized three-dimensional (3D) cell design with improved electrochemical properties, which can be correlated to a characteristic lithium distribution along 3D micro-structures at different State-of-Health (SoH). 3D elemental mapping was applied for characterizing the whole electrode as function of SoH. It was demonstrated that fs-laser generated 3D architectures improves the battery performance regarding battery power and lifetime. It was quantitatively shown by laser-induced breakdown spectroscopy that 3D architectures act as attractor for lithium-ions. Furthermore, lateral intrinsic porosity variations were identified to be possible starting points for lithium plating and subsequent cell degradation. Results achieved from post-mortem studies of cells with laser structured electrodes (intrinsic and artificial porosity variation), and unstructured lithium-nickel-manganese-cobalt-oxide electrodes will be presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call