Abstract

We report the generation of shock waves in a disperse medium with absorbing particles of black pigment in the water using continuous laser radiation. As a result of the experimental investigation it was found that the illuminating beam diameter growth at the constant laser power results in the decrease of the signals' modulation frequencies, improving their stability and increasing their amplitudes. In turn, the decrease of the signal's modulation frequency is caused by the growth of time, which is needed for heating the medium to the critical temperature of cavitation. Improving the stability and the increase of optical and acoustic signal amplitudes take place, due to the growth of the medium volume and hence the number of pigment particles that participate in cavitation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.