Abstract

Propagating bending waves are studied in three different composite tubes by holographic interferometry. A conical mirror is placed axially inside the tubes. Axial illumination and observation directions make it possible to view the circumference of the tube, with a high sensitivity to radial deformation. It is shown how the deformation field can be numerically evaluated using a phase stepping and unwrapping technique. Transient bending waves in the tubes are both generated and recorded by the same pulsed laser, which makes the experiments easy to perform. Finite element simulations of the impacted tubes are compared to corresponding experiments. Both the geometry and the material properties of the tubes affect the wave propagation. For unidirectional composite tubes, the 0-deg and 90-deg directions have different dynamic behavior. The proposed method could be used in nondestructive testing of tubes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.