Abstract
ABSTRACT The laser gas oxidising of Ti–6Al–4V surface was studied. Confocal laser scanning microscopy techniques were used to investigate its two- and three-dimensional surface topographies. Gas flow behaviour was simulated to define the minimum O2 concentration required for Ti–6Al–4V to self-sustain combustion. To understand the flow behaviour of the Ti–6Al–4V fluid, a high-speed camera monitored the evolution of the Ti–6Al–4V fluid, and the flow behaviour was simulated. Experimental and simulation results show that Ti–6Al–4V can self-sustain combustion with a high O2 to Ar gas flow ratio, and the oxidising layer is rough with macroscopic cracks, while a low O2 to Ar gas flow ratio results in a smooth oxidising layer without cracks. Ti–6Al–4V can self-sustain combustion when the O2 concentration exceeds 65%. Furthermore, the laser molten pool and self-sustaining combustion zone mix and flow together, and a large self-sustaining combustion zone leads to a low convection velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.