Abstract

Polarization spectroscopy of an Fe-Ar hollow cathode discharge cell was used to lock a frequency-doubled Ti:sapphire laser to the 372-nm5D4→5F5 transition of 56Fe. The discharge cell produced a density of 1018 m-3 ground-state 56Fe atoms at a temperature of 650 K, this density being comparable to a conventional oven at 1500 K. Saturated absorption spectroscopy and two schemes of polarization spectroscopy were compared with respect to signal-to-background ratio and the effect of velocity-changing collisions. The laser was locked within 0.2 MHz for hours by feedback of the dispersive polarization spectroscopy signal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.