Abstract
Sample preparation remains a bottleneck for protein structure determination by cryo-electron microscopy. A frequently encountered issue is that proteins adsorb to the air-water interface of the sample in a limited number of orientations. This makes it challenging to obtain high-resolution reconstructions or may even cause projects to fail altogether. We have previously observed that laser flash melting and revitrification of cryo samples reduces preferred orientation for large, symmetric particles. Here, we demonstrate that our method can in fact be used to scramble the orientation of proteins of a range of sizes and symmetries. The effect can be enhanced for some proteins by increasing the heating rate during flash melting or by depositing amorphous ice onto the sample prior to revitrification. This also allows us to shed light onto the underlying mechanism. Our experiments establish a set of tools for overcoming preferred orientation that can be easily integrated into existing workflows.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.