Abstract

Steady-state visual evoked potentials (VEP's) were recorded from four cynomolgus monkeys in response to a sinusoidally oscillating 10 degrees helium-neon laser speckle field (632.8 nm), moving vertically 2.5 degrees at 8 shifts per second. A 5-pulse flash train at the maximum permissible exposure (MPE) dose from a collimated Q-switched frequency-doubled neodymium laser (532 nm) was superimposed on the foveal stimulus and the subsequent disruption and recovery of the VEP measured. Minimal disruption of the response signal magnitude was demonstrated (0.1 greater than p greater than 0.05) which recovered within 300 ms of the termination of the pulse train. A small but significant (p less than 0.01) disruption of phase entrainment was also noted that recovered within the same period. This is contrasted with a second experiment with three monkeys in which an argon (514 nm) laser served both as the speckle stimulus source and as the shuttered flash. Exposure to collimated MPE argon radiation for 250 ms immediately depressed the VEP (97%, p less than 0.01) and showed recovery to 70% of the pre-flash baseline only after 3 s. Phase lock was also severely degraded for several seconds. These results imply that visual processing of nonacuity-limited medium contrast stimuli with broad spatial frequency content will probably not be materially affected by ultra-short pulsed laser exposure at these energy levels and frequencies. However, even safe levels of collimated continuous laser light may have severe effects on vision that could parallel flash effects seen with Xenon discharge flash lamps.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.