Abstract
In this work, we fabricate heterojunction silicon solar cells on p-type substrates whose rear surface configuration is based on dielectric passivation and laser fired contacts (LFC cells). This is an alternative to boron-doped amorphous silicon film, with which we also fabricate solar cells for direct comparison (HJ cells). As substrates, 3.5 and 0.8 Ω cm p-type double-side polished FZ c-Si wafers are used. Regarding surface passivation for highly doped substrates, LFC configuration has some advantage due to the higher difficulty in creating an efficient amorphous back surface field. Additionally, those substrates are also more advantageous in terms of carrier injection when the rear surface is locally contacted. Thus LFC cells made on 0.8 Ω cm substrates reach V oc values up to 680 mV, in the same range as that of their HJ cell counterpart, with better FF demonstrating that LFC configuration is a feasible alternative for highly doped substrates. Focusing on the impact of the distance between rear contacts on cell performance, we found a trade-off between open circuit voltage V oc and fill factor FF. Finally electroluminescence characterization and the dependence of V oc on pitch, modeled by Fischer's equation, indicate that the depassivated area due to the laser processing of the contacts is bigger than the contacted area.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.