Abstract

A detailed investigation of optical properties of donor impurities in quantum dots under the influence of laser field with Gaussian potential is performed by using the matrix diagonalization method within the effective mass approximation. Based on the computed energies and wave functions, the dependence of the nonlinear optical properties on the dot size and the potential depth is investigated. The outcome of the calculation suggests that all the factors mentioned above can influence the nonlinear optical properties strongly. We also note that the increase of the laser-dressing parameter leads to important effects on the electronic and optical properties of a quantum dot. This gives a new degree of freedom in various device applications based on the intersubband transition of electrons.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call