Abstract
Custom shaped magnetic flux guiding channels have been fabricated on superconducting Nb thin films by laser nanopatterning of their surface. Preferential pathways are defined by suitable combination of imprinted anisotropic pinning domains through laser-induced periodic surface structures (LIPSS). Generated by the selective energy deposition of femtosecond UV laser pulses, quasi-parallel ripple structures are formed under optimized irradiation conditions. On average, each domain is formed by grooves with a lateral period of 260–270 nm and a depth about 80 nm. By combination of scanning and transmission electron microscopy, magneto-optical imaging, and conductive atomic force microscopy techniques, we conclude that the boundaries of the LIPSS-covered domains play a prominent role in the magnetic flux diversion process within the film. This is confirmed by dedicated modeling of the flux dynamics, combined with the inversion of the magneto-optical signal. The created metasurfaces enable control of the flux penetration process at the microscale.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.