Abstract

We report here on the results of comparative experimental measurements of laser energy absorption in a bulk and different morphology nanowire arrays interacting with relativistically intense, ultra-high temporal contrast femtosecond laser pulses. We compare polished, flat bulk samples with vertically and randomly oriented nanowires made of ZnO semiconductor material. The optical absorption of the 45° incident laser pulses of ∼40 fs duration with a central wavelength of 400 nm at intensities above 1019Wcm2 was determined using an integrating Ulbricht sphere. We demonstrate an almost twofold enhancement of absorption in both nanowire morphologies with an average of (79.6±1.9)% in comparison to the flat bulk sample of (45.8±1.9)%. The observed substantially enhanced absorption in nanowire arrays is also confirmed by high-resolution x-ray emission spectroscopy. The spectral analysis of the K-shell x-ray emission lines revealed that the He-like resonance line emission from highly ionized Zn (Zn28+) is only present in the case of nanowire arrays, whereas, for the flat bulk samples, only neutral and low charge states were observed. Our numerical simulations, based on radiative-collisional kinetic code FLYCHK, well reproduce the measured He-like emission spectrum and suggest that high charge state observed in nanowire arrays is due to substantially higher plasma temperature. Our results, which were measured for the first time with femtosecond laser pulses, can be used to benchmark theoretical models and numerical codes for the relativistic interaction of ultrashort laser pulses with nanowires.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.