Abstract

In this paper the effects of laser irradiation on MHD Non-Newtonian hybird nanofluid flow and bioheat transfer have been proposed. If the tissue is vertical and there is a sudden change in environmental temperature, free convection will flow and bioheat transfer must be solved in conjunction with hydrodynamics equations of nanofluid (blood) motion. The bioheat transfer within the tissue can be formulated in mathematical model as an initial and boundary value problem. The non-linear system of partial differential equations is solved analytically by applying Laplace transform with the help of finite Fourier sine transform. The energy equation assumes that the tissue temperature and blood phase are identical. The blood velocity profile is decreasing in parallel with the rise of fluid parameters. This implies that the medication conveyance therapy lessens the tumor volume and helps in annihilating malignancy cells by applying small parameters such as Casson parameter. The bioheat tissue temperature distribution increases as the both magnetite nanoparticles and multi-walled carbon nanotubes increase. Therefore, we enhance the physical properties of the blood by immersing the magnetite nanoparticles through it. The hybrid volume of nanoparticles will be more effective in enhancing blood velocity and tissue temperature by laser nanoparticle method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.