Abstract

The effects of single-pulse ruby laser irradiation have been investigated in Si samples with disorder layers located at a depth of 2000 A from the crystal surface and extending up to 8000 A. This disorder was obtained by implantation with 350 keV N+ to a fluence of 2×1016/cm2. Channeling, diffraction and transmission electron microscopy were used to characterize the structure of the irradiated layers. After 1.5 J/cm2 irradiation the damaged layer reorders partially, while for about 2.0J/cm2 the surface single crystal becomes polycrystalline. At a higher energy density all the material undergoes the transition to single crystal. Calculations based on the liquid model accounts in part for the experimental results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.