Abstract

In this paper we discuss some of the important issues pertaining to laser acceleration in vacuum, neutral gases, and plasmas. The limitations of laser vacuum acceleration as they relate to electron slippage, laser diffraction, material damage, and electron aperture effects, are discussed. An inverse Cherenkov laser acceleration configuration is presented in which a laser beam is self-guided in a partially ionized gas. Optical self-guiding is the result of a balance between the nonlinear self-focusing properties of neutral gases and the diffraction effects of ionization. The stability of self-guided beams is analyzed and discussed. In addition, aspects of the laser wakefield accelerator are presented and laser-driven accelerator experiments are briefly discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.