Abstract
In this paper, we investigate the production of high energy gamma photons at the interaction between an ultra-high intensity laser pulse with an energetic electron beam and with a near-critical density plasma for the laser intensity varying between 1019–1023 W/cm2. In the case of the interaction with an electron beam, and for the highest laser intensities considered, the electrons lose almost all their energy to emit gamma photons. In the interaction with a near-critical density plasma, the electrons are first accelerated by the laser pulse up to GeV energies and further emit high energy radiation. A maximum laser-to-photons conversion coefficient of 30% is obtained. These results can be used for the preparation of experiments at the Apollon and ELI laser facilities for the investigation of the emission of high energy γ-photons and to study the electron-positron pair creation in the laboratory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.