Abstract
This paper overviews experimental and numerical results on acceleration of narrow energy spread ion beams by an electrostatic collisionless shockwave driven by 1 μm (Omega EP) and 10 μm (UCLA Neptune Laboratory) lasers in near critical density CH and He plasmas, respectively. Shock waves in CH targets produced high-energy ∼50 MeV protons (ΔE/E of ≤30%) and 314 MeV C6+ ions (ΔE/E of ≤10%). Observation of acceleration of both protons and carbon ions to similar velocities is consistent with reflection of particles off the moving potential of a shock front. For shocks driven by CO2 laser in a gas jet, ∼30 MeV peak in He ion spectrum was detected. Particle-in-cell simulations indicate that regardless of the target further control over its density profile is needed for optimization of accelerated ion beams in part of energy spread, yield and maximum kinetic energy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.