Abstract

A novel approach for remotely sensing mechanical cardiovascular activity for use as a biometric marker is proposed. Laser Doppler Vibrometry (LDV) is employed to sense vibrations on the surface of the skin above the carotid artery related to arterial wall movements associated with the central blood pressure pulse. Carotid LDV signals are recorded using noncontact methods and the resulting unobtrusiveness is a major benefit of this technique. Several recognition methods are proposed that use the temporal and/or spectral information in the signal to assess biometric performance both on an intrasession basis, and on an intersession basis where LDV measurements were acquired from the same subjects after delays ranging from one week to six months. A waveform decomposition method that utilizes principal component analysis is used to model the signal in the time domain. Authentication testing for this approach produces an equal-error rate of 0.5% for intrasession testing. However, performance degrades substantially for intersession testing, requiring a more robust approach to modeling. Improved performance is obtained using techniques based on time-frequency decomposition, incorporating a method for extracting informative components. Biometric fusion methods including data fusion and information fusion are applied to train models using data from multiple sessions. As currently implemented, this approach yields an intersession equal-error rate of 6.3%.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.